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A fast quantum algorithm for a search and pattern recognition in a Hilbert space memory
structure is proposed. All the memory information is mapped onto a unitary operator
acting upon a quantum state which represents a piece of information to be retrieved.
As a result of only one quantum measurement, the address of the required information
encoded in a number of the corresponding row of the unitary matrix is determined. By
combining direct and dot products, the dimensionality of the memory space can be made
exponentially large, using only linear resources. However, since the preprocessing, i.e.,
mapping the memory information into a Hilbert space can appear to be exponentially
expensive, the proposed algorithm will be effective for NASA applications when the
preprocessing is implemented on the ground, while the memory search is performed on
remote objects.
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1. INTRODUCTION

Recent advances in quantum information theory have inspired an explosion of
interest in new quantum algorithms for solving hard computational problems. They
include a special class of so-called NP-complete problems which are considered
to be intractable by most of the theoretical computer scientists. One of the oldest
(and still unsolved) problems of this class is a search problem: find one item in an
unsorted database (for instance, find the name that matches a telephone number
in a telephone book). As for any of NP-complete problems, here the algorithm for
solution is very simple: try each item and compare with the sought one. Classically,
this would require an average 0(N) queries to the database ifN is the number of
items. Therefore, for exponentially largeN, the problem becomes intractable. In
terms of quantum computing, finding the item in the database corresponds to
measuring the system and having it collapse to the state which represents that
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item. As shown by Grover (1996), the quantum algorithm requires only 0(
√

N)
queries, but its complexity is still exponential.

Further progress in reducing the search complexity can be associated with
incorporating a structure into databases. Indeed, unsorted databases have limited
practical importance and they usually serve as benchmarks for rating the problem’s
complexity. In this note we will be concerned with memory databases whose struc-
tures can be predesigned to make anticipated information processing as effective
as possible.

2. QUANTUM SEARCH

Suppose that a memory is organized as a normalized relational database, i.e.,
it is stored in a set ofN N-dimensional real orthonormal vectors:

Ui = U (1)
i , U (2)

i , . . . , U N
i ; i = 1, 2,. . . , N (1)

Ui •U j = δi j (2)

The components of these vectors form a unitary matrix

U =


U11 · · · U1N

· · · · · · · · ·
· · · · · · · · ·
UN1 · · · UN N

 , U−1 = U T (3)

which is characterized byN(N − 1)/2 independent parameters. Each row of the
matrix (3) corresponds to a vector from the set (1), and therefore, the number of
that row can be associated with the vector address.

Now the problem can be posed as follows: given a vectorUk as a memory
state from the set (1), find its address, i.e., find the corresponding number of the
row in the matrix (3).

It turns out that utilizing quantum parallelism, this problem can be solved in
one computational step.

Indeed, let us build a quantum system whose Hamiltonian is derived from the
unitary matrix (3) as the evolutionary operator, i.e.,

U (t∗) = e−i Ht ·|h, i = √−1, h = 1.054× 10−34 j s (4)

for a fixed time intervalt∗.
If the operator (4) is applied to a quantum state|ψk(0)〉 represented by a unit

vectorUk(0) then the new quantum state att = t∗ will be

|ψk(t∗)〉 = U |ψ (0)〉 (5)
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The new unit vectorUk(t∗) has the following components:

Uk(t∗) =


U11 · · · U1N···
· · · · · · · · ·
· · · · · · · · ·
UN1 · · · UN N




Uk1

...

...

UK N

 =


U1 •Uk

· · ·
Uk •Uk

· · ·
Un •Uk

 =


0
...

1
...

0


(6)

and therefore, it is in eigenstate which corresponds to its address. This address can
be determined by one quantum measurement.

Thus, because of quantum parallelism, all the queries are performed
simultaneously.

3. PATTERNS CLASSIFICATION

The same procedure described by Eq. (6) can be reinterpreted as pattern
recognition and classification. Indeed, let us assume that|ψk(0)〉 represents an
unknown vectorUk(0), and one wishes to find out what is the closest vector among
the set (1) to it. Then the vector (6) gives the closest address ofUk(0). Actually the
quantum evolution (5) and the measurement (6) represent a dynamical system with
N static attractors. However unlike recurrent neural nets, the basins of attractors
are not defined in a deterministic way. To show that, let us assume that

Ui •Uk = εik , i = 1, 2,. . . , N,
N∑

i=1

ε2
ik = 1 (7)

whereεik characterizes the distance between the input vectorUk and the vectors
of the set (1). Then the vectorUq has the highest probabilityε2

qk to become an
attractor

εqk = max
i 6=q

(εik) (8)

However, with a smaller probabilityε2
jk < ε2

qk(i 6= q), any vectorUj 6= Uq can
become the attractor. Moreover, with the probability

ε2
ik = 1− ε2

iq , i = 1, 2,. . . , N 6= q (9)

the vectorUq will not be the attractor.
To remove such an uncertainty, one has to repeat the algorithm (5), (6) several

times. Indeed, considering each quantum simulation as a Bernoulli trial in which
the probability of the correct answer isf , the answer is incorrect if

P = 1− f (10)
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Then the probability of the correct answer afterM simulations is

fm = 1− (1− f )M = 1− ε2M
ik → 1at M→∞ (11)

Hence, eventually, the vectorUq becomes a clear winner. As in recurrent neural
nets, here a static attractor represents an abstraction of the pattern which is free of
insignificant features such asεik (see Eq. (7)). The role of synaptic interconnections
are played by the componentsUi j of the unitary matrix (3) which as “wirelessly”
implemented via quantum physics; the dynamical evolution is governed by the
Schrödinger Eq. (5), and the sigmoid function is implemented by the measurement
operator in (5). An easy reconfigurability of the “net” with change of the “synaptic
interconnections”Ui j (but without change of the hardware) will be demonstrated
later.

4. EXPONENTIAL CAPACITY

For an effective implementation of the evolutionary operatorU , one has to
impose some constraints upon the orthonormal vectors (1), namely they must be
representable in the direct product form:

Ui = |ψ (i )〉 = ∣∣ψ (i )
1

〉⊗ ∣∣ψ (i )
2

〉⊗ · · · ⊗ ∣∣ψ (i )
n

〉
(12)

where each multiplier is a superposition of two qubits:

∣∣ψ (i )
1

〉 = ω′1i

(
1

0

)
+ ω1i

(
0

1

)
=
(
ω′1i

ω′′1i

)
(13)

Then the evolutionary operatorU has the form:

U = U (1)⊗U (2)⊗ · · · ⊗U (n) (14)

whereU (i ) are the 2× 2 unitary operators acting on the corresponding single qubits
(13).

Equation (14) can be generalized by including dot products and identity op-
erators, for instance

U = (U (1)
1 ⊗U (2)

1 ⊗ · · · ⊗U (n)
1

) • (U (1)
2 ⊗ · · · ⊗U (n)

2

) • · · · • (U (1)
n ⊗ · · · ⊗U (n)

n

)
(15)

or

U = (I ⊗U (3)
) •U (2) • (U (1)⊗ I ) (16)

In terms of circuit representation, Eq. 16 can be implemented as shown in Fig. 1.
Here the role of the identity operator I is to introduce a 2-qubit logic gate known
as a sufficient tool for universal quantum computations.
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Fig. 1.

Let us return to Eq. (14). The hardware “resources” can be characterized by
the number of matrix elements to be implemented

r = 4n (17)

The information capacity can be characterized by the number of the matrix element
in the total direct product in (14):

c = 2n = 2r/4 (18)

As follows from (18), the information capacity grows exponentially with linear
growth of the resources.

5. RECONFIGURABILITY

Let us represent a 2× 2 unitary matrixUp in (14) in the form

Up = νp

(
λ

(p)
1 0
0 λ

(p)
2

)
ν−1

p , λ
(p)
j = eiϕ(p)

j t∗p/ h (19)

whereϕ(p)
j are the eigenvalues of the corresponding Hamiltonian, andt∗ is the

duration of the computation.
As follows from Eq. (19), each componenet of the matrixUp is a sum of two

periodic functions with the periods

T (p)
j =

2πh

ϕ
(p)
j

, j = 1, 2; (20)

The number of different values whichλ(p)
j takes during the corresponding period

T (p)
j is

`
(p)
j =

T (p)
j

t∗p
= 2πh

t∗pϕ
(p)
j

(21)

wheret∗p is the duration of the computational step.
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If ϕ(p)
1 andϕ(p)

2 do not commensurate (for instance, if they are relatively prime
numbers), then the number of different configurations which the total matrixUp

can take is

`(p) = `(p)
1 `

(p)
2 =

4π2h2

t∗2ϕ(p)
1 ϕ

(p)
2

(22)

Since all the unitary matricesUp in the direct product (14) are independent, the
corresponding time-stepst∗p can be chosen arbitrarily, and therefore, the number
of different configurations of the product (14) will be

` =
n∏

p=1

`(p) = h2n(2π )2n∏n
p=1 t∗2p ϕ

(p)
1 ϕ

(p)
2

(23)

Let us evaluate this number. As follows from the time–energy uncertainty
relationship:

1E1t ≥ h (24)

the upper bound of (23) is

` ≤ (2π )2n = (2π )r/2 (25)

since

ϕ
(p)
i t∗p ≥ h (26)

Thus, Eq. (25) expresses the maximum number of different unitary matrix con-
figurations which can be achieved with the same hardware, i.e., only by changing
the values of the computation timesτp, and each configuration is encoded byn
numberst∗1 , t∗2 , . . . , t∗n .

6. EXTENSION TO COMPLEX DOMAIN

So far we have not exploited the fact that each element of a unitary matrix is
characterized by two numbers: the real and the imaginary. Here we will show how
one can double the information capacity of the proposed quantum device.

Consider a set ofn n-dimensional vectors

Si = S1, S2, . . . , Sn; i = 1, 2,. . . , n (27)

which are not necessarily unit or orthogonal. Such vectors form an affine matrix
with elementsSi j . Let us map this matrix onto the following Hermitian matrix:

S=


S11 S12 · · · S1n

S21 S22 · · · S2n

· · · · · · · · · · · ·
Sn1 S2n · · · Snn

→←


H11, H12+ i H21 · · · H1n + i Hn1

H12− i H21, H22, · · · H2n − i Hn2

· · · · · · · · · · · ·
H1n − i Hn1, · · · · · · Hnn

 = H · · ·

(28)
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which we associate with the underlying Hamiltonian. Then the corresponding unitary
matrix (3) will be uniquely defined by Eq. (4)

U = e−i Ht ·/ h (29)

All the three matrices (28) and (29) haveN2 independent parameters since the
matrix Scan be uniquely mapped onto the unitary matrixU in Eq. (29).

7. CONCLUSION

There are three basic properties of the proposed algorithm which distinguishes
it from existing quantum algorithms.

Firstly, in contradistinction to the Grover (1996) or Shor (1997) algorithms,
it is fully deterministic: the answer results from only one measurement.

Secondly, the answer is stored not in a quantum state, but rather in the evolu-
tionary operator while the quantum state represents the “question.”

Thirdly, the algorithm itself is very simple, however the complexity of the
preprocessing, in general, may occur to be exponential. Indeed, although
a normalized relational database is a preferred objective (regardless of quan-
tum implementation), it is not always easy to organize memory that
way.

It should be noticed that the direct and dot product decomposability of the
evolutionary operator expressed by Eqs. (9 and 10) presents another restriction
imposed upon the database; without this restriction, an arbitrary Hamiltonian could
not be built using linear resources.

The last property suggests that the proposed algorithm will be effective for
such applications in which the available resources for the preprocessing stage is
much bigger than those for the stage of performance. This requirement perfectly
fits NASA applications when the preprocessing, i.e., organizing memory structure
is implemented on the ground and can take months or years, while the memory
search is performed in seconds on remote objects (spacecrafts, robots) where the
resources are extremely limited.
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